Reinaldo Braga et Hervé Martin - Clustering User Trajectories to Find Patterns for Social Interaction Applications

Organisé par : 

Gilles Bisson, équipe AMA

Intervenant : 

Reinaldo Braga et Hervé Martin (équipe STEAMER du LIG)

Équipes : 
Information détaillée : 

Les recherches de l’équipe AMA du laboratoire LIG s’inscrivent dans le cadre général de l’apprentissage automatique et de la modélisation de l’information. Nos séminaires de travail sont ouverts à tous les chercheurs, ingénieurs, doctorants, … intéressés par ces disciplines.

- Jeudi 26 avril 10H30 (11H00 pour les extérieurs)

  • Titre : "Clustering User Trajectories to Find Patterns for Social Interaction Applications"
  • Conférenciers : Reinaldo Braga et Hervé Martin (LIG)

Lieu des séminaires AMA :

Centre Equation 4 
Allée de la Palestine - 38610 GIERES 
Grande salle de réunion "Turing" à droite en entrant 
(en cas de problème contacter le 06 33 06 72 28)

Tram B : arrêt Condillac

Google map

Résumé : 

Sharing of user data has substantially increased over the past few years facilitated by sophisticated Web and mobile applications, including social networks. For instance, users can easily register their trajectories over time based on their daily trips captured with GPS receivers as well as share and relate them with trajectories of other users. Analyzing user trajectories over time can reveal habits and preferences. This information can be used to recommend content to single users or to group users together based on similar trajectories and/or preferences. Recording GPS tracks generates very large amounts of data. Therefore clustering algorithms are required to efficiently analyze such data. In this paper, we focus on investigating ways of efficiently analyzing user trajectories and extracting user preferences from them. We demonstrate an algorithm for clustering user GPS trajectories. In addition, we propose an algorithm to correlate trajectories based on near points between two or more users. The obtained results provided interesting avenues for exploring Location-based Social Network (LBSN) applications.