Vendredi 9 juillet 2021
- Imprimer
 - Partager
 - Partager sur Facebook
 - Share on X
 - Partager sur LinkedIn
 
Vers des méthodes transparentes et parcimonieuses pour l’optimisation automatique des performances
We  present a  series of  descriptions and  discussions of  various optimizationn methods, from  the perspective  of performance  tuning.  We  describe heuristics from  mathematical optimization,  and parametric  and nonparametric  statistical modeling methods, describing how these surrogate  models can be used to minimize an unknown  function.  We  then discuss  how the  Design of  Experiments enables managing  the   compromise  between  experimental  budget   and  model  quality, establishing  a  link  with  Online Learning  methods,  focusing  on  parsimony,
progressive model improvement, uncertainty,  and robustness, the properties that are most relevant for a method's applicability to autotuning problems.
The key  contribution of  this thesis  is the development  of a  transparent and parsimonious autotuning  approach based on  the Design of Experiments,  which we apply to  diverse problems such as  optimizing the configuration of  GPU and CPU kernels  and  finding  mixed-precision  bit  quantization  policies  for  neural networks.  We also present a series of empirical evaluations of other methods on autotuning problems from  different High Performance Computing  domains, such as search  heuristics   coordinated  by   a  bandit   algorithm  to   optimize  the
configuration  of compilers  for several  GPU and  FPGA kernels.   Although some experimental scenarios  eluded the  detection and  exploitation of  search space structure,  regardless  of the  chosen  method,  we demonstrate  how  autotuning methods based on the Design of  Experiments can aid in interpretable, efficient, and effective code optimization.
Date et Lieu
Vendredi 9 juillet, à 16h00
https://youtu.be/YvfPalv1cq0
 
Organisé par
Pedro ROCHA BRUEL
Equipe POLARIS - INRIA / LIG
 
Composition du Jury
Universidade Federal Fluminense (Brésil), examinatrice
Google (France), rapporteur
Argonne National Laboratory (États-Unis), rapporteur
CNRS (France), directeur de thèse
Universidade de São Paulo (Brésil), directeur de thèse
- Imprimer
 - Partager
 - Partager sur Facebook
 - Share on X
 - Partager sur LinkedIn