Lundi 5 Juillet 2021
- Imprimer
- Partager
- Partager sur Facebook
- Share on X
- Partager sur LinkedIn
Découvertes de relations causales entre séries temporelles
Résumé:
Cette thèse a pour but d'expliquer les concepts et principes centraux de la causalité. Nous nous intéresserons particulierement à la découverte causale à partir de séries temporelles, domaine émergent aujourd’hi avec, notamment, les données industrielles de capteurs.
Dans les deux premiers chapitres, nous présentons les concepts puis les algorithmes existants dans ce domaine. Ensuite, nous présentons une nouvelle approche qui infère un graphe résumé du système causal sous-jacent aux séries temporelles tout en assouplissant le cadre idéalisé de fréquences d'échantillonnage égaux, tout en discutant ses hypothèses et sa validité. La principale nouveauté dans cette méthode réside dans l'introduction de la mesure d'information mutuelle temporelle causale qui permet de détecter l'indépendance et l'indépendance conditionnelle entre deux séries temporelles, et l’établissement d'un lien apparent entre l'entropie et le principe d'augmentation de la probabilité d'un effet sachant sa cause, lien qui peut être utilisé pour construire de nouvelles règles pour l'orientation de la direction de la causalité. De plus, à travers le développement de la première méthode, nous proposons plusieurs extensions qui permettent de gérer les causes communes cachées, de déduire un graphe causal temporel à partir d'un graphe récapitulatif et de pouvoir s’adapter aux données ordonnées (pas nécessairement temporelles).
Puis, nous nous concentrons sur la découverte de relations causales à partir d'une distribution statistique qui n'est pas entièrement fidèle au graphe causal réel et sur la distinction entre une cause commune et une cause intermédiaire même, en absence d'indicateur de temps. L'aspect clé de notre réponse à ce problème est le recours au principe du bruit additif pour déduire un supergraphe dirigé contenant le graphe causal. Pour converger vers le graphe causal, nous utilisons %une nouvelle mesure appelée l'entropie causale temporelle qui élague pour chaque nœud du supergraphe dirigé, les parents qui en sont conditionnellement indépendants. En outre, nous explorons des extensions complémentaires de notre deuxième méthode qui impliquent une stratégie par paires et une stratégie multitâche.
Nous effectuons une comparaison expérimentale approfondie des algorithmes proposés sur des ensembles de données à la fois synthétiques et réels et nous montrons leurs performances pratiques prometteuses: gain en complexité temporelle tout en préservant la précision.
Date et Lieu
Lundi 5 juillet 2021 à 14h00
Organisé par
Karim ASSAAD
Equipe APTIKAL
Composition du Jury
Eric GAUSSIER
Professeur, Université Grenoble Alpes, Directeur de these
Gregor GOESSLER
Directeur de recherche, INRIA, Examinateur
Hervé ISAMBER
Directeur de recherche, CNRS, Rapporteur
Phillipe LERAY
Professeur, Université de Nantes, Rapporteur
Michele SEBAG
Directrice de recherche, CNRS, Examinatrice
Professeur, Université Grenoble Alpes, Directeur de these
Gregor GOESSLER
Directeur de recherche, INRIA, Examinateur
Hervé ISAMBER
Directeur de recherche, CNRS, Rapporteur
Phillipe LERAY
Professeur, Université de Nantes, Rapporteur
Michele SEBAG
Directrice de recherche, CNRS, Examinatrice
Invités
Emilie DEVIJVER
Chargée de recherche, CNRS
Chargée de recherche, CNRS
Ali AIT-BACHIR
Responsable d'équipe, Coservit
Responsable d'équipe, Coservit
- Imprimer
- Partager
- Partager sur Facebook
- Share on X
- Partager sur LinkedIn