Skip to main content

Louis-Sébastien Rebuffi

Lundi 11 décembre 2023

Algorithmes d’apprentissage par renforcement pour le contrôle de systèmes de files d’attente

Résumé :
 
Bien que l’apprentissage par renforcement ait été récemment principalement étudié dans le cas générique des processus de décisions markoviens, le cas des systèmes de files d’attente se dinstigue particulièrement. Pour compenser la taille de l’espace
d’état qui peut être extrêmement grande a priori, les algorithmes d’apprentissage doivent tenir compte de la structure des systèmes afin d’en extraire le plus d’information et de choisir le meilleur contrôle qui optimisent au mieux les performances
du système sur le long terme. Dans cette thèse, nous présentons des algorithmes construits à partir d’algorithmes classiques, adaptés au contexte des système de file d’attente, et nous étudions les performances de ceux-ci pour montrer une dépendance faible à l’espace d’états comparativement aux résultats obtenus dans le cas général.

Date et Lieu

Lundi 11 décembre à 14h
Auditorium du bâtiment IMAG
et à distance

Composition du Jury

Matthieu JONCKHEERE
(Rapporteur)
Ger KOOLE
(Rapporteur)
Nadia BRAUNER
(Examinatrice)
Bruno GAUJAL
(Directeur de thèse)
Alain JEAN-MARIE
(Examinateur)
 

Submitted on November 28, 2023

Updated on November 28, 2023