- Share
- Share on Facebook
- Share on X
- Share on LinkedIn
Human being are apparently able to communicate knowledge. However, it is impossible for us to know if we share the same representation of knowledge.
mOeX addresses the evolution of knowledge representations in individuals and populations. The ambition of the mOeX project is to answer, in particular, the following questions:
- how do agent populations adapt their knowledge representation to their environment and to other populations?
- how must this knowledge evolve when the environment changes and new populations are encountered?
- how can agents preserve knowledge diversity and is this diversity beneficial?
We will study them chiefly in a well-controlled computer science context.
For that purpose, we combine knowledge representation and cultural evolution methods. The former provides formal models of knowledge; the latter provides a well-defined framework for studying situated evolution.
We will consider knowledge as a culture and study the properties of adaptation operators applied by populations of agents by jointly:
- experimentally testing the properties of adaptation operators in various situations using experimental cultural evolution, and
- theoretically determining such properties by modelling how operators shape knowledge representation
We aim at acquiring a precise understanding of knowledge evolution through the consideration of a wide range of situations, representations and adaptation operators.
Keywords
Artificial Intelligence Knowledge representation Cultural evolution
MOEX
Leader Jérôme Euzenat
Website http://moex.inria.fr
Phone 04 76 61 53 66
Building Montbonnot - INRIA
- Share
- Share on Facebook
- Share on X
- Share on LinkedIn